Identification of a Multipotent Self-Renewing Stromal Progenitor Population during Mammalian Kidney Organogenesis

نویسندگان

  • Akio Kobayashi
  • Joshua W. Mugford
  • A. Michaela Krautzberger
  • Natalie Naiman
  • Jessica Liao
  • Andrew P. McMahon
چکیده

The mammalian kidney is a complex organ consisting of multiple cell types. We previously showed that the Six2-expressing cap mesenchyme is a multipotent self-renewing progenitor population for the main body of the nephron, the basic functional unit of the kidney. However, the cellular mechanisms establishing stromal tissues are less clear. We demonstrate that the Foxd1-expressing cortical stroma represents a distinct multipotent self-renewing progenitor population that gives rise to stromal tissues of the interstitium, mesangium, and pericytes throughout kidney organogenesis. Fate map analysis of Foxd1-expressing cells demonstrates that a small subset of these cells contributes to Six2-expressing cells at the early stage of kidney outgrowth. Thereafter, there appears to be a strict nephron and stromal lineage boundary derived from Six2-expressing and Foxd1-expressing cell types, respectively. Taken together, our observations suggest that distinct multipotent self-renewing progenitor populations coordinate cellular differentiation of the nephron epithelium and renal stroma during mammalian kidney organogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Early Postnatal Nonhuman Primate Neocortex Contains Self-Renewing Multipotent Neural Progenitor Cells

The postnatal neocortex has traditionally been considered a non-neurogenic region, under non-pathological conditions. A few studies suggest, however, that a small subpopulation of neural cells born during postnatal life can differentiate into neurons that take up residence within the neocortex, implying that postnatal neurogenesis could occur in this region, albeit at a low level. Evidence to s...

متن کامل

Paradigms of notch signaling in mammals.

Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal life. These proteins are involved in organogenesis during embryonic development as well as in the maintenance of homeostasis of self-renewing systems. The paradigms of Notch function, such as stem and progenitor cell maintenance, lineage specification mediated by binary cell ...

متن کامل

Identification of a Novel Developmental Stage Marking Lineage Commitment of Progenitor Thymocytes

Bipotent progenitors for T and natural killer (NK) lymphocytes are thought to exist among early precursor thymocytes. The identification and functional properties of such a progenitor population remain undefined. We report the identification of a novel developmental stage during fetal thymic ontogeny that delineates a population of T/NK-committed progenitors (NK1. 1(+)/CD117(+)/CD44(+)/CD25(-))...

متن کامل

Potential of adipose-derived stem cells in muscular regenerative therapies

Regenerative capacity of skeletal muscles resides in satellite cells, a self-renewing population of muscle cells. Several studies are investigating epigenetic mechanisms that control myogenic proliferation and differentiation to find new approaches that could boost regeneration of endogenous myogenic progenitor populations. In recent years, a lot of effort has been applied to purify, expand and...

متن کامل

Neural progenitor cells lack immunogenicity and resist destruction as allografts.

Multipotent, self-renewing stem and progenitor cells isolated from the mammalian central nervous system (CNS) have been shown to survive as allografts following transplantation to sites throughout the neuraxis. However, studies of this type shed little light upon the immunologic properties of the cells themselves, primarily because little is learned about the intrinsic immunogenic properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014